TITLE

Self-Destruct Genetic Switch to Safeguard iPS Cells

AUTHOR(S)
Ivics, Zoltán
PUB. DATE
September 2015
SOURCE
Molecular Therapy;Sep2015, Vol. 23 Issue 9, p1417
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The author comments on a study that make use of the self-destructing genetic switch in safeguarding the induced pluripotent stem (iPS) cells. The topics discussed include the effectiveness of differentiated somatic cell direct reprogramming in producing similar embryonic stem (ES) cells, the enginerring of the human iPS cells in expressing inducible caspase-9, and the possible application of transplantation and cellular replacement therapies.
ACCESSION #
109166152

 

Related Articles

  • Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Tanay, Amos; Chomsky, Elad; Zeliger, Shlomit Reich; Friedman, Nir; Fried, Yael Chagit; Ainbinder, Elena // Nature;9/4/2014, Vol. 513 Issue 7516, p115 

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and...

  • n-Butylidenephthalide (BP) Maintains Stem Cell Pluripotency by Activating Jak2/Stat3 Pathway and Increases the Efficiency of iPS Cells Generation. Shih-Ping Liu; Horng-Jyh Harn; Ying-Jiun Chien; Cheng-Hsuan Chang; Chien-Yu Hsu; Ru-Huei Fu; Yu-Chuen Huang; Shih-Yin Chen; Woei-Cherng Shyu; Shinn-Zong Lin; Rameshwar, Pranela // PLoS ONE;Sep2012, Vol. 7 Issue 9, Special section p1 

    In 2006, induced pluripotent stem (iPS) cells were generated from somatic cells by introducing Oct4, Sox2, c-Myc and Klf4. The original process was inefficient; maintaining the pluripotency of embryonic stem (ES) and iPS cell cultures required an expensive reagent-leukemia induced factor (LIF)....

  • Developmental neuroscience: Miniature human brains. Brüstle, Oliver // Nature;9/19/2013, Vol. 501 Issue 7467, p319 

    The article presents a research that examines the effect of induced pluripotent stem (iPS) cells that are generated through the reprogramming of differentiated cells, and embryonic stem (ES) cells as a tool for modelling neurodevelopmental disorders. It determines how iPS cells can help in...

  • Stem cells: A designer's guide to pluripotency. Wu, Jun; Belmonte, Juan Carlos Izpisua // Nature;12/11/2014, Vol. 516 Issue 7530, p172 

    A review of articles discussing the analysis of induced pluripotent stem cells (iPSCs), a new type of stem cells formed by reintroducing embryonic stem cells (ES cells) into mature cells by P.D. Tonge and colleagues and S.M Hussien and colleagues, published in the December 2014 issue, ie presented.

  • Inhibition of PTEN Tumor Suppressor Promotes the Generation of Induced Pluripotent Stem Cells. Liao, Jiyuan; Marumoto, Tomotoshi; Yamaguchi, Saori; Okano, Shinji; Takeda, Naoki; Sakamoto, Chika; Kawano, Hirotaka; Nii, Takenobu; Miyamato, Shohei; Nagai, Yoko; Okada, Michiyo; Inoue, Hiroyuki; Kawahara, Kohichi; Suzuki, Akira; Miura, Yoshie; Tani, Kenzaburo // Molecular Therapy;Jun2013, Vol. 21 Issue 6, p1242 

    Induced pluripotent stem cells (iPSCs) can be generated from patients with specific diseases by the transduction of reprogramming factors and can be useful as a cell source for cell transplantation therapy for various diseases with impaired organs. However, the low efficiency of iPSC derived...

  • Human amniotic epithelial cell feeder layers maintain iPS cell pluripotency by inhibiting endogenous DNA methyltransferase 1. QING CHEN; CHAOLIN QIU; YONGYI HUANG; LIZHEN JIANG; QIN HUANG; LIHE GUO; TE LIU // Experimental & Therapeutic Medicine;2013, Vol. 6 Issue 5, p1145 

    Maintaining induced pluripotent stem (iPS) cells in an undifferentiated, self-renewing state during long-term cultivation is, at present, a major challenge. We previously showed that human amniotic epithelial cells (HuAECs) were able to provide a good source of feeder cells for mouse and human...

  • Stem cells assessed. Blanpain, Cédric; Daley, George Q.; Hochedlinger, Konrad; Passegué, Emmanuelle; Rossant, Janet; Yamanaka, Shinya // Nature Reviews Molecular Cell Biology;Jul2012, Vol. 13 Issue 7, p471 

    The increasing momentum of stem cell research continues, with the better characterization of induced pluripotent stem (iPS) cells, the conversion of differentiated cells into different cell types and the use of pluripotent stem cells to generate whole tissues, among other advances. Here, six...

  • Small Molecule Screening with Laser Cytometry Can Be Used to Identify Pro-Survival Molecules in Human Embryonic Stem Cells. Sherman, Sean P.; Pyle, April D. // PLoS ONE;Jan2013, Vol. 8 Issue 1, Special section p1 

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide...

  • Induced pluripotent stem cells: the new patient? Bellin, Milena; Marchetto, Maria C.; Gage, Fred H.; Mummery, Christine L. // Nature Reviews Molecular Cell Biology;Nov2012, Vol. 13 Issue 11, p713 

    Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics