TITLE

An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs

AUTHOR(S)
Menon, Siddharth; Shailendra, Siny; Renda, Andrea; Longaker, Michael; Quarto, Natalina
PUB. DATE
January 2016
SOURCE
International Journal of Molecular Sciences;2016, Vol. 17 Issue 1, p141
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Stem cells are classified into embryonic stem cells and adult stem cells. An evolving alternative to conventional stem cell therapies is induced pluripotent stem cells (iPSCs), which have a multi-lineage potential comparable to conventionally acquired embryonic stem cells with the additional benefits of being less immunoreactive and avoiding many of the ethical concerns raised with the use of embryonic material. The ability to generate iPSCs from somatic cells provides tremendous promise for regenerative medicine. The breakthrough of iPSCs has raised the possibility that patient-specific iPSCs can provide autologous cells for cell therapy without the concern for immune rejection. iPSCs are also relevant tools for modeling human diseases and drugs screening. However, there are still several hurdles to overcome before iPSCs can be used for translational purposes. Here, we review the recent advances in somatic reprogramming and the challenges that must be overcome to move this strategy closer to clinical application.
ACCESSION #
112476322

 

Related Articles

  • Self-Destruct Genetic Switch to Safeguard iPS Cells. Ivics, Zoltán // Molecular Therapy;Sep2015, Vol. 23 Issue 9, p1417 

    The author comments on a study that make use of the self-destructing genetic switch in safeguarding the induced pluripotent stem (iPS) cells. The topics discussed include the effectiveness of differentiated somatic cell direct reprogramming in producing similar embryonic stem (ES) cells, the...

  • Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Tanay, Amos; Chomsky, Elad; Zeliger, Shlomit Reich; Friedman, Nir; Fried, Yael Chagit; Ainbinder, Elena // Nature;9/4/2014, Vol. 513 Issue 7516, p115 

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and...

  • n-Butylidenephthalide (BP) Maintains Stem Cell Pluripotency by Activating Jak2/Stat3 Pathway and Increases the Efficiency of iPS Cells Generation. Shih-Ping Liu; Horng-Jyh Harn; Ying-Jiun Chien; Cheng-Hsuan Chang; Chien-Yu Hsu; Ru-Huei Fu; Yu-Chuen Huang; Shih-Yin Chen; Woei-Cherng Shyu; Shinn-Zong Lin; Rameshwar, Pranela // PLoS ONE;Sep2012, Vol. 7 Issue 9, Special section p1 

    In 2006, induced pluripotent stem (iPS) cells were generated from somatic cells by introducing Oct4, Sox2, c-Myc and Klf4. The original process was inefficient; maintaining the pluripotency of embryonic stem (ES) and iPS cell cultures required an expensive reagent-leukemia induced factor (LIF)....

  • Developmental neuroscience: Miniature human brains. Brüstle, Oliver // Nature;9/19/2013, Vol. 501 Issue 7467, p319 

    The article presents a research that examines the effect of induced pluripotent stem (iPS) cells that are generated through the reprogramming of differentiated cells, and embryonic stem (ES) cells as a tool for modelling neurodevelopmental disorders. It determines how iPS cells can help in...

  • Stem cells: A designer's guide to pluripotency. Wu, Jun; Belmonte, Juan Carlos Izpisua // Nature;12/11/2014, Vol. 516 Issue 7530, p172 

    A review of articles discussing the analysis of induced pluripotent stem cells (iPSCs), a new type of stem cells formed by reintroducing embryonic stem cells (ES cells) into mature cells by P.D. Tonge and colleagues and S.M Hussien and colleagues, published in the December 2014 issue, ie presented.

  • Stem cells assessed. Blanpain, Cédric; Daley, George Q.; Hochedlinger, Konrad; Passegué, Emmanuelle; Rossant, Janet; Yamanaka, Shinya // Nature Reviews Molecular Cell Biology;Jul2012, Vol. 13 Issue 7, p471 

    The increasing momentum of stem cell research continues, with the better characterization of induced pluripotent stem (iPS) cells, the conversion of differentiated cells into different cell types and the use of pluripotent stem cells to generate whole tissues, among other advances. Here, six...

  • Human amniotic epithelial cell feeder layers maintain iPS cell pluripotency by inhibiting endogenous DNA methyltransferase 1. QING CHEN; CHAOLIN QIU; YONGYI HUANG; LIZHEN JIANG; QIN HUANG; LIHE GUO; TE LIU // Experimental & Therapeutic Medicine;2013, Vol. 6 Issue 5, p1145 

    Maintaining induced pluripotent stem (iPS) cells in an undifferentiated, self-renewing state during long-term cultivation is, at present, a major challenge. We previously showed that human amniotic epithelial cells (HuAECs) were able to provide a good source of feeder cells for mouse and human...

  • Small Molecule Screening with Laser Cytometry Can Be Used to Identify Pro-Survival Molecules in Human Embryonic Stem Cells. Sherman, Sean P.; Pyle, April D. // PLoS ONE;Jan2013, Vol. 8 Issue 1, Special section p1 

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide...

  • The Race Is On: Human Embryonic Stem Cell Research Goes Global. DeRouen, Mindy; McCormick, Jennifer; Owen-Smith, Jason; Scott, Christopher // Stem Cell Reviews & Reports;Dec2012, Vol. 8 Issue 4, p1043 

    More nations are joining the human embryonic stem cell (hESC) 'race' by aggressively publishing in the peer-reviewed journals. Here we present data on the international use and distribution of hESC using a dataset taken from the primary research literature. We extracted these papers from a...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics