TITLE

Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity

AUTHOR(S)
Schrier-Uijl, Arina P.; Kroon, Petra S.; Leffelaar, Peter A.; Huissteden, J. C. van; Berendse, Frank; Veenendaal, Elmar M.
PUB. DATE
April 2010
SOURCE
Plant & Soil;Apr2010, Vol. 329 Issue 1/2, p509
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Methane (CH4) emissions were compared for an intensively and extensively managed agricultural area on peat soils in the Netherlands to evaluate the effect of reduced management on the CH4 balance. Chamber measurements (photoacoustic methods) for CH4 were performed for a period of three years in the contributing landscape elements in the research sites. Various factors influencing CH4 emissions were evaluated and temperature of water and soil was found to be the main driver in both sites. For upscaling of CH4 fluxes to landscape scale, regression models were used which were specific for each of the contributing landforms. Ditches and bordering edges were emission hotspots and emitted together between 60% and 70% of the total terrestrial CH4 emissions. Annual terrestrial CH4 fluxes were estimated to be 203 (±48%), 162 (±60%) and 146 (±60%) kg CH4 ha−1 and 157 (±63%), 180 (±54%) and 163 (±59%) kg CH4 ha−1 in the intensively managed site and extensively managed site, for 2006, 2007 and 2008 respectively. About 70% of the CH4 was emitted in the summer period. Farm based emissions caused per year an additional 257 kg CH4 ha−1 and 172 kg CH4 ha−1 for the intensively managed site and extensively managed site, respectively. To further evaluate the effect of agricultural activity on the CH4 balance, the annual CH4 fluxes of the two managed sites were also compared to the emissions of a natural peat site with no management and high ground water levels. By comparing the terrestrial and additional farm based emissions of the three sites, we finally concluded that transformation of intensively managed agricultural land to nature development will lead to an increase in terrestrial CH4 emission, but will not by definition lead to a significant increase in CH4 emission when farm based emissions are included.
ACCESSION #
48569712

 

Related Articles

  • Biotic Landfill Cover Treatments for Mitigating Methane Emissions. Hilger, Helene; Humer, Marion // Environmental Monitoring & Assessment;May2003, Vol. 84 Issue 1/2, p71 

    Landfill methane (CH4) emissions have been cited as one of the anthropogenic gas releases that can and should be controlled to reduce global climate change. This article reviews recent research that identifies ways to enhance microbial consumption of the gas in the aerobic portion of a landfill...

  • Attribution of spatial and temporal variations in terrestrial methane flux over North America. Xu, X. F.; Tian, H. Q.; Zhang, C.; Liu, M. L.; Ren, W.; Chen, G. S.; Lu, C. Q.; Bruhwiler, L. // Biogeosciences Discussions;2010, Vol. 7 Issue 4, p5383 

    The attribution of spatial and temporal variations in terrestrial methane (CH4) flux is essential for assessing and mitigating CH4 emission from terrestrial ecosystems. In this study, we used a process-based model, the Dynamic Land Ecosystem Model (DLEM), in conjunction with spatial data of six...

  • Interactive comment on "Methane emission and consumption at a North Sea gas seep (Tommeliten area)" by H. Niemann et al. Niemann, H. // Biogeosciences;2005 Supplement, pS588 

    Presents a response by H. Niemann, et al, to a comment on their article "Methane Emission and Consumption at a North Sea Gas Seep," which appeared in the 2005 issue of "Biogeosciences Discussions." Consequences of possible sample contamination on rate measurements; Presence of non-zero sulphate...

  • Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Meirink, J. F.; Eskes, H. J.; Goede, A. P. H. // Atmospheric Chemistry & Physics Discussions;2005, Vol. 5 Issue 5, p9405 

    Satellite observations of trace gases in the atmosphere offer a promising method for global verification of emissions and improvement of global emission inventories. Here, an inverse modelling approach based on four-dimensional variational (4D-var) data assimilation is presented and applied to...

  • Squeezing Gas From a Cow. Trimble, Tyghe // Popular Mechanics;Mar2006, Vol. 183 Issue 3, p21 

    This article presents information on the use of methane fuel as a power resource in Europe. One of the European cities is running one train, 67 buses and 80 cabs entirely on biogas, a methane fuel made primarily from cow intestines and other slaughterhouse waste. Biogas releases significantly...

  • Quantifying wetland methane emissions with process-based models of different complexities. Tang, J.; Zhuang, Q.; Shannon, R. D.; White, J. R. // Biogeosciences Discussions;2010, Vol. 7 Issue 4, p6121 

    Bubbling is an important pathway of methane emissions from wetland ecosystems; however the concentration-based threshold function approach in current biogeochemistry models of methane is not sufficient to represent the complex ebullition process. Here we revise an extant process-based...

  • Verifying Inventory Predictions of Animal Methane Emissions with Meteorological Measurements. Denmead, O. T.; Leuning, R.; Griffith, D. W. T.; Jamie, I. M.; Esler, M. B.; Harper, L. A.; Freney, J. R. // Boundary-Layer Meteorology;Aug2000, Vol. 96 Issue 1/2, p187 

    The paper examines the strengths and weaknesses of a range of meteorological flux measurement techniques that might be used to verify predictions of greenhouse gas inventories. Recent research into emissions of methane (CH4) produced by enteric fermentation in grazing cattle and sheep is used to...

  • Time to tackle another major climate warming culprit - CH4. van der Burgt, Maarten J. // Modern Power Systems;Jan2009, Vol. 29 Issue 1, p11 

    The article focuses on methane (CH4), which is considered as one of the major climate warming culprits. It is said that methane has a greenhouse gas (GHG) emission eight times as great as carbon dioxide (C02) for a time horizon of 100 years. Its emissions are said to be bounded from the...

  • METHANE EMISSION AS INFLUENCED BY DIFFERENT CROP ESTABLISHMENT TECHNIQUES AND ORGANIC MANURES. Jayadeva, H. M.; Setty, T. K. Prabhakara; Gowda, R. C.; Devendra, R.; Mallikarjun, G. B.; Bandi, A. G. // Agricultural Science Digest;2009, Vol. 29 Issue 4, p241 

    The field and laboratory experiment was carried out during kharif, 2005 to know the methane emission as influenced by different crop establishment techniques and organic manures. The experiment involved three crop establishment techniques viz., Transplanting, System of rice intensification (SRI)...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics