Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells

Subramanyam, Deepa; Lamouille, Samy; Judson, Robert L.; Liu, Jason Y.; Bucay, Nathan; Derynck, Rik; Blelloch, Robert
May 2011
Nature Biotechnology;May2011, Vol. 29 Issue 5, p443
Academic Journal
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGF?-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.


Related Articles

  • Muse cells and induced pluripotent stem cell: implication of the elite model. Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari // Cellular & Molecular Life Sciences;Nov2012, Vol. 69 Issue 22, p3739 

    Induced pluripotent stem (iPS) cells have attracted a great deal attention as a new pluripotent stem cell type that can be generated from somatic cells, such as fibroblasts, by introducing the transcription factors Oct3/4, Sox2, Klf4, and c-Myc. The mechanism of generation, however, is not fully...

  • microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Guo, Xudong; Liu, Qidong; Wang, Guiying; Zhu, Songcheng; Gao, Longfei; Hong, Wujun; Chen, Yafang; Wu, Minjuan; Liu, Houqi; Jiang, Cizhong; Kang, Jiuhong // Cell Research;Jan2013, Vol. 23 Issue 1, p142 

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM), but the mechanisms underlying this reprogramming remain poorly understood. Here, we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during...

  • Efficient Generation of iPS Cells from Skeletal Muscle Stem Cells. Kah Yong Tan; Eminli, Sarah; Hettmer, Simone; Hochedlinger, Konrad; Wagers, Amy J. // PLoS ONE;2011, Vol. 6 Issue 10, p1 

    Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its...

  • Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Adesida, Adetola B.; Mulet-Sierra, Aillette; Jomha, Nadr M. // Stem Cell Research & Therapy;2012, Vol. 3 Issue 2, p1 

    Introduction: The capacity of bone marrow mesenchymal stromal cells (BMSCs) to be induced into chondrocytes has drawn much attention for cell-based cartilage repair. BMSCs represent a small proportion of cells of the bone marrow stromal compartment and, thus, culture expansion is a necessity for...

  • ESTOOLS Data@Hand: human stem cell gene expression resource. Kong, Lingjia; Aho, Kaisa-Leena; Granberg, Kirsi; Lund, Riikka; Järvenpää, Laura; Seppälä, Janne; Gokhale, Paul; Leinonen, Kalle; Hahne, Lauri; Mäkelä, Jarno; Laurila, Kirsti; Pukkila, Heidi; Närvä, Elisa; Yli-Harja, Olli; Andrews, Peter W; Nykter, Matti; Lahesmaa, Riitta; Roos, Christophe; Autio, Reija // Nature Methods;Sep2013, Vol. 10 Issue 9, p814 

    The article focuses on the resource ESTOOLS Data@Hand, which assists the exploration of gene expression array data in stem cell research. It mentions that ESTOOLS Data@Hand also entails stem cell pluripotency, differentiation and cell dedifferentiation. It also presents a chart illustrating...

  • Hsa-miR-520d Converts Fibroblasts into CD105+ Populations. Ishihara, Yoshitaka; Tsuno, Satoshi; Kuwamoto, Satoshi; Yamashita, Taro; Endo, Yusuke; Hasegawa, Junichi; Miura, Norimasa // Drugs in R&D;Dec2014, Vol. 14 Issue 4, p253 

    Background: We have previously shown that hsa-miR-520d-5p can convert cancer cells into induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) via a dedifferentiation by a demethylation mechanism. Methods: We tested the effect of miR-520d-5p on human fibroblasts to determine...

  • Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells. Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang // PLoS ONE;Jan2014, Vol. 9 Issue 1, p1 

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of...

  • Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells. Chan-Jung Chang; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E. // PLoS ONE;2011, Vol. 6 Issue 10, p1 

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types:...

  • Genetically Matched Human iPS Cells Reveal that Propensity for Cartilage and Bone Differentiation Differs with Clones, not Cell Type of Origin. Nasu, Akira; Ikeya, Makoto; Yamamoto, Takuya; Watanabe, Akira; Jin, Yonghui; Matsumoto, Yoshihisa; Hayakawa, Kazuo; Amano, Naoki; Sato, Shingo; Osafune, Kenji; Aoyama, Tomoki; Nakamura, Takashi; Kato, Tomohisa; Toguchida, Junya // PLoS ONE;Jan2013, Vol. 8 Issue 1, Special section p1 

    Background: For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics