TITLE

Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1

AUTHOR(S)
Maekawa, Momoko; Yamaguchi, Kei; Nakamura, Tomonori; Shibukawa, Ran; Kodanaka, Ikumi; Ichisaka, Tomoko; Kawamura, Yoshifumi; Mochizuki, Hiromi; Goshima, Naoki; Yamanaka, Shinya
PUB. DATE
June 2011
SOURCE
Nature;6/9/2011, Vol. 474 Issue 7350, p225
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transgenic expression of three transcription factors collectively called OSK: Oct3/4 (also called Pou5f1), Sox2 and Klf4. However, the conversion to iPSCs is inefficient. The proto-oncogene Myc enhances the efficiency of iPSC generation by OSK but it also increases the tumorigenicity of the resulting iPSCs. Here we show that the Gli-like transcription factor Glis1 (Glis family zinc finger 1) markedly enhances the generation of iPSCs from both mouse and human fibroblasts when it is expressed together with OSK. Mouse iPSCs generated using this combination of transcription factors can form germline-competent chimaeras. Glis1 is enriched in unfertilized oocytes and in embryos at the one-cell stage. DNA microarray analyses show that Glis1 promotes multiple pro-reprogramming pathways, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal-epithelial transition. These results therefore show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation.
ACCESSION #
61202650

 

Related Articles

  • Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon // Cell Research;Sep2011, Vol. 21 Issue 9, p1305 

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into...

  • Chromatin-modifying enzymes as modulators of reprogramming. Onder, Tamer T.; Kara, Nergis; Cherry, Anne; Sinha, Amit U.; Zhu, Nan; Bernt, Kathrin M.; Cahan, Patrick; Marcarci, B. Ogan; Unternaehrer, Juli; Gupta, Piyush B.; Lander, Eric S.; Armstrong, Scott A.; Daley, George Q. // Nature;3/29/2012, Vol. 483 Issue 7391, p598 

    Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific...

  • Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Zhang, X; Cruz, F D; Terry, M; Remotti, F; Matushansky, I // Oncogene;5/2/2013, Vol. 32 Issue 18, p2249 

    Pluripotent cells can be derived from various types of somatic cells by nuclear reprogramming using defined transcription factors. It is, however, unclear whether human cancer cells can be similarly reprogrammed and subsequently terminally differentiated with abrogation of tumorigenicity. Here,...

  • Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Nemajerova, A; Kim, S Y; Petrenko, O; Moll, U M // Cell Death & Differentiation;Aug2012, Vol. 19 Issue 8, p1268 

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and...

  • Advancements in reprogramming strategies for the generation of induced pluripotent stem cells. Lai, Mei; Wendy-Yeo, Wai; Ramasamy, Rajesh; Nordin, Norshariza; Rosli, Rozita; Veerakumarasivam, Abhi; Abdullah, Syahril // Journal of Assisted Reproduction & Genetics;Apr2011, Vol. 28 Issue 4, p291 

    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using...

  • Muse cells and induced pluripotent stem cell: implication of the elite model. Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari // Cellular & Molecular Life Sciences;Nov2012, Vol. 69 Issue 22, p3739 

    Induced pluripotent stem (iPS) cells have attracted a great deal attention as a new pluripotent stem cell type that can be generated from somatic cells, such as fibroblasts, by introducing the transcription factors Oct3/4, Sox2, Klf4, and c-Myc. The mechanism of generation, however, is not fully...

  • Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate. Marthaler, Adele G.; Tiemann, Ulf; Araúzo-Bravo, Marcos J.; Wu, Guangming; Zaehres, Holm; Hyun, Jung Keun; Han, Dong Wook; Schöler, Hans R.; Tapia, Natalia // PLoS ONE;Dec2013, Vol. 8 Issue 12, p1 

    Transcription factor-based reprogramming can lead to the successful switching of cell fates. We have recently reported that mouse embryonic fibroblasts (MEFs) can be directly reprogrammed into induced neural stem cells (iNSCs) after the forced expression of Brn4, Sox2, Klf4, and Myc. Here, we...

  • microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Guo, Xudong; Liu, Qidong; Wang, Guiying; Zhu, Songcheng; Gao, Longfei; Hong, Wujun; Chen, Yafang; Wu, Minjuan; Liu, Houqi; Jiang, Cizhong; Kang, Jiuhong // Cell Research;Jan2013, Vol. 23 Issue 1, p142 

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM), but the mechanisms underlying this reprogramming remain poorly understood. Here, we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during...

  • Stem cells: Neural progenitors from fibroblasts.  // Nature Methods;Aug2012, Vol. 9 Issue 8, p781 

    The article offers information a research regarding the generation of differentiating pluripotent stem cells of both mouse and human from fibroblasts using a single transcription factor.

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics