TITLE

In Vitro Modeling of Paraxial Mesodermal Progenitors Derived from Induced Pluripotent Stem Cells

AUTHOR(S)
Sakurai, Hidetoshi; Sakaguchi, Yasuko; Shoji, Emi; Nishino, Tokiko; Maki, Izumi; Sakai, Hiroshi; Hanaoka, Kazunori; Kakizuka, Akira; Sehara-Fujisawa, Atsuko
PUB. DATE
October 2012
SOURCE
PLoS ONE;Oct2012, Vol. 7 Issue 10, Special section p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1- population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR- population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR- population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.
ACCESSION #
83523312

 

Related Articles

  • Induced pluripotent stem cells in research and therapy. Hoon-Koon Teoh; Soon-Keng Cheong // Malaysian Journal of Pathology;Jun2012, Vol. 34 Issue 1, p1 

    Induced pluripotent stem cells (iPSC) are derived from human somatic cells through ectopic expression of transcription factors. This landmark discovery has been considered as a major development towards patient-specific iPSC for various biomedical applications. Unlimited self renewal capacity,...

  • Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Tohru Sugawara; Koichiro Nishino; Akihiro Umezawa; Hidenori Akutsu // Stem Cell Research & Therapy;2012, Vol. 3 Issue 2, p1 

    Induced pluripotent stem (iPS) cells, obtained from reprogramming somatic cells by ectopic expression of a defined set of transcription factors or chemicals, are expected to be used as differentiated cells for drug screening or evaluations of drug toxicity and cell replacement therapies. As...

  • Generation of Induced Pluripotent Stem Cells from Human Nasal Epithelial Cells Using a Sendai Virus Vector. Ono, Mizuho; Hamada, Yuko; Horiuchi, Yasue; Matsuo-Takasaki, Mami; Imoto, Yoshimasa; Satomi, Kaishi; Arinami, Tadao; Hasegawa, Mamoru; Fujioka, Tsuyoshi; Nakamura, Yukio; Noguchi, Emiko; Barbuti, Andrea // PLoS ONE;Aug2012, Vol. 7 Issue 8, Special section p1 

    The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we...

  • Putting induced pluripotent stem cells to the test. Vallier, Ludovic // Nature Biotechnology;Nov2015, Vol. 33 Issue 11, p1145 

    The article focuses on the sustainability of Human induced pluripotent stem cells (hiPSCs) for supporting clinical applications. Topics discussed include new possibilities for personalized cell therapy after the discovery that human somatic cell can be reprogrammed into a pluripotent stem cell,...

  • The fate of cell reprogramming. Karagiannis, Peter; Yamanaka, Shinya // Nature Methods;Oct2014, Vol. 11 Issue 10, p1006 

    The article presents the authors' opinion on cell reprogramming and the ability to convert somatic cells to induced pluripotent stem cells which has potential to further understanding of development and disease mechanisms, as well as for cellular therapy. The authors say researchers must expand...

  • Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Liang, Gaoyang; He, Jin; Zhang, Yi // Nature Cell Biology;May2012, Vol. 14 Issue 5, p457 

    Transcription-factor-directed reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) is by nature an epigenetic process of cell fate change. Previous studies have demonstrated that this inefficient process can be facilitated by the inclusion of additional factors. To gain...

  • Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H // Nature Biotechnology;Jul2015, Vol. 33 Issue 7, p769 

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various...

  • In vivo cell reprogramming to pluripotency: exploring a novel tool for cell replenishment and tissue regeneration. de Lázaro, Irene; Kostarelos, Kostas // Biochemical Society Transactions;Jun2014, Vol. 42 Issue 3, p711 

    The potential of cell-replacement strategies for the treatment of disorders in which a particular cell type is damaged or degenerated has prompted the search for the perfect cell source. iPSCs (induced pluripotent stem cells) stand out as very advantageous candidates thanks to their self-renewal...

  • Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Pellegrini, Silvia; Ungaro, Federica; Mercalli, Alessia; Melzi, Raffaella; Sebastiani, Guido; Dotta, Francesco; Broccoli, Vania; Piemonti, Lorenzo; Sordi, Valeria // Acta Diabetologica;Dec2015, Vol. 52 Issue 6, p1025 

    Aims: New sources of insulin-secreting cells are strongly required for the cure of diabetes. Recent successes in differentiating embryonic stem cells, in combination with the discovery that it is possible to derive human induced pluripotent stem cells (iPSCs) from somatic cells, have raised the...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics