TITLE

TLR-3 receptor activation protects the very immature brain from ischemic injury

AUTHOR(S)
Hui Shi; Gabarin, Nadia; Hickey, Edward; Askalan, Rand
PUB. DATE
September 2013
SOURCE
Journal of Neuroinflammation;
SOURCE TYPE
DOC. TYPE
Article
ABSTRACT
Background: We have shown that preconditioning by lipopolysaccharide (LPS) will result in 90% reduction in ischemic brain damage in P7 rats. This robust LPS neuroprotection was not observed in P3 or P5 pups (corresponding to human premature infant). LPS is a known Toll-like receptor 4 (TLR-4) ligand. We hypothesized that TLRs other than TLR-4 may mediate preconditioning against cerebral ischemic injury in the developing brain. Methods: TLR-2, TLR-3, TLR-4, and TLR-9 expression was detected in brain sections from P3, P5, and P7 rats by immuno-staining. In subsequent experiments, P5 rats were randomly assigned to TLR-3 specific agonist, poly I:C, or saline treated group. At 48 h after the injections, hypoxic-ischemic (HI) injury was induced by unilateral carotid artery ligation followed by hypoxia for 65 min. Brains were removed 1 week after HI injury and infarct volumes were compared in H&E stained sections between the two groups. Results: TLR-2 and TLR-3 were highly expressed in brains of P3 and P5 but not in P7 rats. The number of TLR-4 positive cells was lower in P3 and P5 compared to P7 brains (P <0.05). TLR-3 was predominately expressed in P5 pups (P <0.05). There was no significant difference in TLR-9 expression in the three age groups. There was a significant reduction in infarct volume (P = 0.01) in poly I:C compared to saline pre-treated P5 pups. Pre-treatment with poly I:C downregulated NF-κB and upregulated IRF3 expression in P5 rat ischemic brains. Pre-treatment with poly I:C did not offer neuroprotection in P7 rat brains. Conclusion: TLRs expression and function is developmentally determined. Poly I:C-induced preconditioning against ischemic injury may be mediated by modulation of TLR-3 signaling pathways. This is the first study to show that TLR-3 is expressed in the immature brain and mediates preconditioning against ischemic injury.
ACCESSION #
90275020

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics