TITLE

Experimental approaches for the generation of induced pluripotent stem cells

AUTHOR(S)
Sommer, Cesar A.; Mostoslavsky, Gustavo
PUB. DATE
March 2010
SOURCE
Stem Cell Research & Therapy;2010, Vol. 1 Issue 3, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Derivation of autologous induced pluripotent stem cells (iPSCs) through direct reprogramming of easily accessible somatic cells holds the potential to transform the field of regenerative medicine. Since Takahashi and Yamanaka's groundbreaking study describing the generation of iPSCs by retroviral-mediated delivery of defined transcription factors, substantial progress has been made to improve both the efficiency and safety of the method. These advances have provided new insights into the molecular mechanisms of reprogramming and promise to accelerate the clinical translation of iPSC technology. Here, we summarize current reprogramming methodologies with a focus on the production of transgene-free or genetically unmanipulated iPSCs and highlight important technical details that ultimately may influence the biological properties of pluripotent stem cells.
ACCESSION #
90378931

 

Related Articles

  • Putting induced pluripotent stem cells to the test. Vallier, Ludovic // Nature Biotechnology;Nov2015, Vol. 33 Issue 11, p1145 

    The article focuses on the sustainability of Human induced pluripotent stem cells (hiPSCs) for supporting clinical applications. Topics discussed include new possibilities for personalized cell therapy after the discovery that human somatic cell can be reprogrammed into a pluripotent stem cell,...

  • Direct reprogramming of adult cells: avoiding the pluripotent state. Kelaini, Sophia; Cochrane, Amy; Margariti, Andriana // Stem Cells & Cloning: Advances & Applications;2014, Vol. 7, p19 

    The procedure of using mature, fully differentiated cells and inducing them toward other cell types while bypassing an intermediate pluripotent state is termed direct reprogramming. Avoiding the pluripotent stage during cellular conversions can be achieved either through ectopic expression of...

  • Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Liang, Gaoyang; Zhang, Yi // Cell Research;Jan2013, Vol. 23 Issue 1, p49 

    Pluripotent stem cells, like embryonic stem cells (ESCs), have specialized epigenetic landscapes, which are important for pluripotency maintenance. Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs) requires global change of somatic cell epigenetic status into an...

  • The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Mansour, Abed AlFatah; Gafni, Ohad; Weinberger, Leehee; Zviran, Asaf; Ayyash, Muneef; Rais, Yoach; Krupalnik, Vladislav; Zerbib, Mirie; Amann-Zalcenstein, Daniela; Maza, Itay; Geula, Shay; Viukov, Sergey; Holtzman, Liad; Pribluda, Ariel; Canaani, Eli; Horn-Saban, Shirley; Amit, Ido; Novershtern, Noa; Hanna, Jacob H. // Nature;8/16/2012, Vol. 488 Issue 7411, p409 

    Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these...

  • Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. Fischedick, Gerrit; Klein, Diana C.; Wu, Guangming; Esch, Daniel; Höing, Susanne; Han, Dong Wook; Reinhardt, Peter; Hergarten, Kerstin; Tapia, Natalia; Schöler, Hans R.; Sterneckert, Jared L. // PLoS ONE;Apr2012, Vol. 7 Issue 4, p1 

    Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating...

  • Session 53: Are human embryonic stem cells ready for regenerative medicine?  // Human Reproduction;Jun2013, Vol. 28 Issue suppl_1, pi84 

    No abstract available.

  • Use of UTF1 Genetic Control Elements as iPSC Reporter. Morshedi, Amir; Soroush Noghabi, Monireh; Dröge, Peter // Stem Cell Reviews & Reports;Aug2013, Vol. 9 Issue 4, p523 

    The reprogramming of adult somatic cells into an embryonic stem cell (ESC) state by various means has opened a new chapter in basic and applied life science. While this technology will create great opportunities for regenerative medicine, the more immediate impact is likely to be found in human...

  • Stem cells: Sweetening pluripotency. Donner, Amy // Nature Chemical Biology;Jul2012, Vol. 8 Issue 7, p602 

    The article offers information on the transformation of somatic cells into induced pluripotent stem cells by the combination of transcription factors which includes octamer binding transcription factor 4 (OCT-4) and SOX2.

  • Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Tohru Sugawara; Koichiro Nishino; Akihiro Umezawa; Hidenori Akutsu // Stem Cell Research & Therapy;2012, Vol. 3 Issue 2, p1 

    Induced pluripotent stem (iPS) cells, obtained from reprogramming somatic cells by ectopic expression of a defined set of transcription factors or chemicals, are expected to be used as differentiated cells for drug screening or evaluations of drug toxicity and cell replacement therapies. As...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics