TITLE

Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate

AUTHOR(S)
Marthaler, Adele G.; Tiemann, Ulf; Araúzo-Bravo, Marcos J.; Wu, Guangming; Zaehres, Holm; Hyun, Jung Keun; Han, Dong Wook; Schöler, Hans R.; Tapia, Natalia
PUB. DATE
December 2013
SOURCE
PLoS ONE;Dec2013, Vol. 8 Issue 12, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Transcription factor-based reprogramming can lead to the successful switching of cell fates. We have recently reported that mouse embryonic fibroblasts (MEFs) can be directly reprogrammed into induced neural stem cells (iNSCs) after the forced expression of Brn4, Sox2, Klf4, and Myc. Here, we tested whether iNSCs could be further reprogrammed into induced pluripotent stem cells (iPSCs). The two factors Oct4 and Klf4 were sufficient to induce pluripotency in iNSCs. Immunocytochemistry and gene expression analysis showed that iNSC-derived iPSCs (iNdiPSCs) are similar to embryonic stem cells at the molecular level. In addition, iNdiPSCs could differentiate into cells of all three germ layers, both in vitro and in vivo, proving that iNdiPSCs are bona fide pluripotent cells. Furthermore, analysis of the global gene expression profile showed that iNdiPSCs, in contrast to iNSCs, do not retain any MEF transcriptional memory even at early passages after reprogramming. Overall, our results demonstrate that iNSCs can be reprogrammed to pluripotency and suggest that cell fate can be redirected numerous times. Importantly, our findings indicate that the induced pluripotent cell state may erase the donor-cell type epigenetic memory more efficiently than other induced somatic cell fates.
ACCESSION #
93398321

 

Related Articles

  • Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon // Cell Research;Sep2011, Vol. 21 Issue 9, p1305 

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into...

  • Role of Oct4 in maintaining and regaining stem cell pluripotency. Guilai Shi; Ying Jin // Stem Cell Research & Therapy;2010, Vol. 1 Issue 5, p1 

    Pluripotency, a characteristic of cells in the inner cell mass of the mammalian preimplantation blastocyst as well as of embryonic stem cells, is defined as the ability of a cell to generate all of the cell types of an organism. A group of transcription factors is essential for the establishment...

  • Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Yingzi Oh; Heming Wei; Dongrui Ma; Xiaoming Sun; Liew, Reginald // Heart;Mar2012, Vol. 98 Issue 6, p443 

    The emergence of induced pluripotent stem cell (iPSC) technology has had a great impact on the field of medicine ever since the ground-breaking discovery in 2006 that overexpression of four specific transcription factors was able to turn back the developmental clock of somatic cells into an...

  • Effect of Different Feeding Schedules on The Survival and Neural Differentiation of Human Embryonic and Induced Pluripotent Stem Cells. JENSEN, Matthew B.; JAGER, Lindsey D.; COHEN, Laura K.; KWOK, Susanna S.; KWON, Jin M.; HALL, Crystal A. // Journal of Neurological Sciences;2014, Vol. 31 Issue 2, p226 

    Neural culture of human pluripotent stem cells is useful for neuroscience research, but the optimal feeding schedule for these in vitro systems is unclear. We evaluated the survival and neural differentiation profiles of human embryonic and induced pluripotent stem cells cultured with medium...

  • Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC. Khodadadi, Khodadad; Sumer, Huseyin; Pashaiasl, Maryam; Lim, Susan; Williamson, Mark; Verma, Paul J. // Stem Cells International;2012, p1 

    Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES) cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species.We report the induction of pluripotency in adult equine...

  • Experimental approaches for the generation of induced pluripotent stem cells. Sommer, Cesar A.; Mostoslavsky, Gustavo // Stem Cell Research & Therapy;2010, Vol. 1 Issue 3, p1 

    Derivation of autologous induced pluripotent stem cells (iPSCs) through direct reprogramming of easily accessible somatic cells holds the potential to transform the field of regenerative medicine. Since Takahashi and Yamanaka's groundbreaking study describing the generation of iPSCs by...

  • FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Zhang, Xin; Yalcin, Safak; Lee, Dung-Fang; Yeh, Tsung-Yin J.; Lee, Seung-Min; Su, Jie; Mungamuri, Sathish Kumar; Rimmel�, Pauline; Kennedy, Marion; Sellers, Rani; Landthaler, Markus; Tuschl, Thomas; Chi, Nai-Wen; Lemischka, Ihor; Keller, Gordon; Ghaffari, Saghi // Nature Cell Biology;Sep2011, Vol. 13 Issue 9, p1092 

    Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. ), NANOG (refs , ), SOX2 (ref. ) and their binding...

  • Oct4 links multiple epigenetic pathways to the pluripotency network. Ding, Junjun; Xu, Huilei; Faiola, Francesco; Ma'ayan, Avi; Wang, Jianlong // Cell Research;Jan2012, Vol. 22 Issue 1, p155 

    Oct4 is a well-known transcription factor that plays fundamental roles in stem cell self-renewal, pluripotency, and somatic cell reprogramming. However, limited information is available on Oct4-associated protein complexes and their intrinsic protein-protein interactions that dictate Oct4's...

  • Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Liang, Gaoyang; Zhang, Yi // Cell Research;Jan2013, Vol. 23 Issue 1, p49 

    Pluripotent stem cells, like embryonic stem cells (ESCs), have specialized epigenetic landscapes, which are important for pluripotency maintenance. Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs) requires global change of somatic cell epigenetic status into an...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics