TITLE

SOME REMARKS ON THE STRUCTURE OF STRONG k-TRANSITIVE DIGRAPHS

AUTHOR(S)
HERNÁNDEZ-CRUZ, CÉSAR; MONTELLANO-BALLESTEROS, JUAN JOSÉ
PUB. DATE
November 2014
SOURCE
Discussiones Mathematicae: Graph Theory;2014, Vol. 34 Issue 4, p651
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
A digraph D is k-transitive if the existence of a directed path (v0, v1, ..., vk), of length k implies that (v0, vk) ∈ & A(D). Clearly, a 2-transitive digraph is a transitive digraph in the usual sense. Transitive digraphs have been characterized as compositions of complete digraphs on an acyclic transitive digraph. Also, strong 3 and 4-transitive digraphs have been characterized. In this work we analyze the structure of strong k-transitive digraphs having a cycle of length at least k. We show that in most cases, such digraphs are complete digraphs or cycle extensions. Also, the obtained results are used to prove some particular cases of the Laborde-Payan-Xuong Conjecture.
ACCESSION #
99025117

 

Related Articles

  • New Ore's Type Results on Hamiltonicity and Existence of Paths of Given Length in Graphs. Lichiardopol, Nicolas // Graphs & Combinatorics;Jan2013, Vol. 29 Issue 1, p99 

    The well-known Ore's theorem (see Ore in Am Math Mon 65:55, ), states that a graph G of order n such that d( x) + d( y) ≥ n for every pair { x, y} of non-adjacent vertices of G is Hamiltonian. In this paper, we considerably improve this theorem by proving that in a graph G of order n and...

  • An Algorithm to Detect Cycle in an Undirected Graph. Kumar, Anand; Jani, N. N. // International Journal of Computational Intelligence Research;2010, Vol. 6 Issue 2, p305 

    This paper presents a novel algorithm to detect cycles in a graph. The graph may be of any type. Cycles are available in a graph and in much real life application; it is required to know the existence of cycles in a graph. This algorithm is developed in the context of network design problem but...

  • Neighborhood Unions for the Existence of Disjoint Chorded Cycles in Graphs. Gao, Yunshu; Li, Guojun; Yan, Jin // Graphs & Combinatorics;Sep2013, Vol. 29 Issue 5, p1337 

    A chorded cycle is a cycle with at least one chord. We prove that if G is a simple graph with order n ≥ 4 k and $${|N_G(x)\cup N_G(y)|\geq 4k+1}$$ for each nonadjacent pair of vertices x and y, then G contains k vertex-disjoint chorded cycles. The degree condition is sharp in general.

  • UNDERLYING GRAPHS OF 3-QUASI-TRANSITIVE DIGRAPHS AND 3-TRANSITIVE DIGRAPHS RUIXIA WANG, SHIYING WANG. RUIXIA WANG; SHIYING WANG // Discussiones Mathematicae: Graph Theory;2013, Vol. 33 Issue 2, p429 

    A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1 x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). César Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation....

  • On Sullivan's conjecture on cycles in 4-free and 5-free digraphs. Liang, Hao; Xu, Jun // Acta Mathematica Sinica;Jan2013, Vol. 29 Issue 1, p53 

    For a simple digraph G, let β( G) be the size of the smallest subset X ⊆ E( G) such that G−X has no directed cycles, and let γ( G) be the number of unordered pairs of nonadjacent vertices in G. A digraph G is called k-free if G has no directed cycles of length at most k. This...

  • A Contribution to the Second Neighborhood Problem. Ghazal, Salman // Graphs & Combinatorics;Sep2013, Vol. 29 Issue 5, p1365 

    Seymour's Second Neighborhood Conjecture asserts that every oriented graph (without digons) has a vertex whose first out-neighborhood is at most as large as its second out-neighborhood. It is proved for tournaments, tournaments missing a matching and tournaments missing a generalized star. We...

  • Improved Sufficient Conditions for the Existence of Anti-Directed Hamiltonian Cycles in Digraphs. Busch, Arthur; Jacobson, Michael; Morris, Timothy; Plantholt, Michael; Tipnis, Shailesh // Graphs & Combinatorics;May2013, Vol. 29 Issue 3, p359 

    Let D be a directed graph of order n. An anti-directed ( hamiltonian) cycle H in D is a (hamiltonian) cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. In this paper we give sufficient conditions for the existence of anti-directed hamiltonian...

  • γ-CYCLES AND TRANSITIVITY BY MONOCHROMATIC PATHS IN ARC-COLOURED DIGRAPHS. CASAS-BAUTISTA, ENRIQUE; GALEANA-SÁNCHEZ, HORTENSIA; ROJAS-MONROY, ROCÍO // Discussiones Mathematicae: Graph Theory;2013, Vol. 33 Issue 3, p493 

    We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a...

  • The Existence of an Alternating Sign on a Spanning Tree of Graphs. KIM, DONGSEOK; KWON, YOUNG SOO; LEE, JAEUN // Kyungpook Mathematical Journal;Dec2012, Vol. 52 Issue 4, p513 

    For a spanning tree T of a connected graph .. and for a labelling Φ: E(T ) ! {+,-}, Φ is called an alternating sign on a spanning tree T of a graph ... if for any cotree edge e ∈ E(...)-E(T ), the unique path in T joining both end vertices of e has alternating signs. In the present...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics