TITLE

Advancements in reprogramming strategies for the generation of induced pluripotent stem cells

AUTHOR(S)
Lai, Mei; Wendy-Yeo, Wai; Ramasamy, Rajesh; Nordin, Norshariza; Rosli, Rozita; Veerakumarasivam, Abhi; Abdullah, Syahril
PUB. DATE
April 2011
SOURCE
Journal of Assisted Reproduction & Genetics;Apr2011, Vol. 28 Issue 4, p291
SOURCE TYPE
Academic Journal
DOC. TYPE
Editorial
ABSTRACT
Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
ACCESSION #
61236430

 

Related Articles

  • Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Nemajerova, A; Kim, S Y; Petrenko, O; Moll, U M // Cell Death & Differentiation;Aug2012, Vol. 19 Issue 8, p1268 

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and...

  • Oct4 links multiple epigenetic pathways to the pluripotency network. Ding, Junjun; Xu, Huilei; Faiola, Francesco; Ma'ayan, Avi; Wang, Jianlong // Cell Research;Jan2012, Vol. 22 Issue 1, p155 

    Oct4 is a well-known transcription factor that plays fundamental roles in stem cell self-renewal, pluripotency, and somatic cell reprogramming. However, limited information is available on Oct4-associated protein complexes and their intrinsic protein-protein interactions that dictate Oct4's...

  • Chromatin-modifying enzymes as modulators of reprogramming. Onder, Tamer T.; Kara, Nergis; Cherry, Anne; Sinha, Amit U.; Zhu, Nan; Bernt, Kathrin M.; Cahan, Patrick; Marcarci, B. Ogan; Unternaehrer, Juli; Gupta, Piyush B.; Lander, Eric S.; Armstrong, Scott A.; Daley, George Q. // Nature;3/29/2012, Vol. 483 Issue 7391, p598 

    Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific...

  • Variation in Mesodermal and Hematopoietic Potential of Adult Skin-derived Induced Pluripotent Stem Cell Lines in Mice. Inoue, Tomoko; Kulkeaw, Kasem; Okayama, Satoko; Tani, Kenzaburo; Sugiyama, Daisuke // Stem Cell Reviews & Reports;Dec2011, Vol. 7 Issue 4, p958 

    Induced pluripotent stem cells (iPSCs) are a promising tool for regenerative medicine. Use of iPSC lines for future hematotherapy will require examination of their hematopoietic potential. Adult skin fibroblast somatic cells constitute a source of iPSCs that can be accessed clinically without...

  • Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors. El-Sayed, Ahmed Kamel; Zhentao Zhang; Lei Zhang; Zhiyong Liu; Abbott, Louise C.; Yani Zhang; Bichun Li // International Journal of Molecular Sciences;2014, Vol. 15 Issue 12, p21840 

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is...

  • Estimating the Quality of Reprogrammed Cells Using ES Cell Differentiation Expression Patterns. Bo Zhang; Beibei Chen; Tao Wu; Yuliang Tan; Shuang Qiu; Zhenyu Xuan; Xiaopeng Zhu; Runsheng Chen // PLoS ONE;2011, Vol. 6 Issue 1, p1 

    Somatic cells can be reprogrammed to a pluripotent state by over-expression of defined factors, and pluripotency has been confirmed by the tetraploid complementation assay. However, especially in human cells, estimating the quality of Induced Pluripotent Stem Cell(iPSC) is still difficult. Here,...

  • Muse cells and induced pluripotent stem cell: implication of the elite model. Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari // Cellular & Molecular Life Sciences;Nov2012, Vol. 69 Issue 22, p3739 

    Induced pluripotent stem (iPS) cells have attracted a great deal attention as a new pluripotent stem cell type that can be generated from somatic cells, such as fibroblasts, by introducing the transcription factors Oct3/4, Sox2, Klf4, and c-Myc. The mechanism of generation, however, is not fully...

  • Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon // Cell Research;Sep2011, Vol. 21 Issue 9, p1305 

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into...

  • Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate. Marthaler, Adele G.; Tiemann, Ulf; Araúzo-Bravo, Marcos J.; Wu, Guangming; Zaehres, Holm; Hyun, Jung Keun; Han, Dong Wook; Schöler, Hans R.; Tapia, Natalia // PLoS ONE;Dec2013, Vol. 8 Issue 12, p1 

    Transcription factor-based reprogramming can lead to the successful switching of cell fates. We have recently reported that mouse embryonic fibroblasts (MEFs) can be directly reprogrammed into induced neural stem cells (iNSCs) after the forced expression of Brn4, Sox2, Klf4, and Myc. Here, we...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics